
COURSE OBJECTIVES 
CHAPTER 2 

 
2. HULL FORM AND GEOMETRY  
 
 1. Be familiar the ways ships can be classified. 
 
 2. Be able to explain the difference between aerostatic, hydrostatic, and 

hydrodynamic support. 
 
 3. Be familiar with the following types of marine vehicles:  displacement ships, 

catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines. 
  
 4. Learn Archimedes Principle in word and mathematical form. 
 
 5. Be able to do calculations using Archimedes Principle. 
 
 6. Be able to read, interpret, and relate the body plan, half-breadth plan, and sheer 

plan including naming the lines found in each plan. 
 
 7. Be able to relate the information in a ship's lines plan to a Table of Offsets. 
 
 8. Be familiar with the following hull form terminology: 
  a. After Perpendicular (AP), Forward Perpendiculars (FP) and midships. 
  b. Length Between Perpendiculars (Lpp ) and Length Overall (LOA).  
  c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B)  
  d. Flare, Tumble home and Camber. 
  e. Centerline, Baseline and Offset. 
 
 9. Be able to define, compare, and contrast “centroid” and “center of mass”. 
 
 10.  Be able to state the physical significance and location of the center of buoyancy 

(B) and center of flotation (F) and state how these points are located using LCB, 
VCB, TCB, TCF, and LCF. 

 

 
(i)



   
 11. Use Simpson’s 1st Rule to calculate the following given a Table of Offsets: 
  a. Waterplane Area (Awp) or (WPA). 
  b. Sectional Area (Asect). 
  c. Submerged Volume (∇). 
  d. Longitudinal Center of Flotation (LCF). 
 
 12. Be able to read and use a ship's Curves of Form to find hydrostatic properties. 
 
 13. Be sure that you are knowledgeable about each of the properties on the Curves of 

Form. 
  
 14. Calculate trim given Taft and Tfwd and understand its physical meaning. 

 
(ii)



2.1 Introduction to Ships and Naval Engineering  
 
Ships are the single most expensive product a nation produces for defense, commerce, research, 
or nearly any other function.  If we are to use such expensive instruments wisely we must 
understand how and why they operate the way they do. 
 
Ships employ almost every type of engineering system imaginable.  Structural networks hold the 
ship together and protect its contents and crew.  Machinery propels the ship and provides for all 
of the needs of the ship's inhabitants.  Every need of every member of the crew must be provided 
for: cooking, eating, trash disposal, sleeping, and bathing.  The study of ships is a study of 
systems engineering. 
 
There are many types of ships from which to choose from and each type has its advantages and 
disadvantages.  Factors which may influence the ship designer's decisions or the customer's 
choices include: cost, size, speed, seakeeping, radar signature, draft, maneuverability, stability, 
and any number of special capabilities.  The designer must weigh all of these factors, and others, 
when trying to meet the customer's specifications.  Most ships sacrifice some characteristics, like 
low cost, for other factors, like speed. 
 
The study of Naval Engineering is the merging of the art and craft of ship building with the 
principles of physics and engineering sciences to meet the needs of a naval vessel in the security 
and defense of our nation..  It is the study of the research, development, design, construction, 
operation, maintenance, and logistical support of our naval vessels.  This introductory course in 
Naval Engineering is meant to give each student an appreciation in each of the more common 
areas of study.  It is meant as a survey course that will give some good practical knowledge to 
every officer assigned to naval service on land, sea or in the air. 
 
 Shipbuilding and design is a practice that dates back to the first caveman who dug a hole 

in a log to make a canoe.  The birth of “modern” shipbuilding, that is the merging of art 
and science, is attributed to Sir Anthony Deane, a shipwright who penned his treatise, 
Doctrine of Naval Architecture in 1670.   
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2.2 Categorizing Ships  
 
The term “ship” can be used to represent a wide range of vessels operating on, above or below 
the surface of the water.  To help organize this study ships are often categorized into groups 
based on either usage or means of support while in operation or both.     
 
A list of classification by usage might include the following. 
 

• Merchant Ships: These ships are intended to earn a profit in the distribution of goods. A 
cash flow analysis is done of income versus costs in the calculation of a rate of return on 
the investment. Engineering economy studies must include receipts earned, acquisition 
costs, operating and maintenance costs, and any salvage value remaining when the ship is 
sold in a time value of money study. 

 
• Naval and Coast Guard Vessels: Classified as combatants or auxiliaries. These ships 

tend to be extremely expensive because their missions require many performance 
capabilities such as speed, endurance, weapons payload, ability to operate and survive in 
hostile environments and reliability under combat conditions. 

 
• Recreational and Pleasure Ships: Personal pleasure craft and cruise liners are a 

specialized class of ships that are run to earn a profit by providing recreation services to 
the general public. Comfort and safety are of utmost importance. 

 
• Utility Tugs: Designed for long operation and easy maintenance with a no frills 

approach. 
 

• Research and Environmental Ships: Highly specialized equipment must be kept and 
often deployed into and out of the water. 

 
• Ferries: People and Vehicles must be able to be loaded and unloaded with efficiency and 

safety in accordance with a strict time schedule in all weather conditions. 
 
Ships can also be classified by the means of physical support while in operation.  Three broad 
classifications that are frequently used by naval architects as shown at Figure 2.1 reproduced 
from an “Introduction to Naval Architecture” by Gillmer and Johnson. 
 

• Aerostatic Support 
 

• Hydrodynamic Support 
 

• Hydrostatic Support 
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2.2.1 Aerostatic Support  
 
Aerostatic support is achieved when the vessel rides on a cushion of air generated by lift fans.   
These vessels tend to be lighter weight and higher speed vessels.  The two basic types of vessels 
supported aerostatically are air cushion vehicle (ACV) and surface effect ships (SES).  See 
Figure 2.1. 
 
 
2.2.1.1 Air Cushion Vehicles (ACVs)  
 
Air Cushion Vehicles (ACVs) or hovercraft continuously force air under the vessel allowing 
some of the air to escape around the perimeter as new air is forced downwards. They are usually 
propelled forward by airplane propeller type devices above the surface of the water with rudders 
behind the air flow to control the vessel. 
 
Hovercrafts are very expensive for their size, but have the unique property of being amphibious. 
The Navy utilizes some hovercraft as LCACs (Landing Craft Air  Cushion vehicles) because of 
this ability. Their use has opened over 75% of the world's coastline to amphibious assault 
compared with 5% with conventional landing craft. 
 
 
2.2.1.2 Surface Effect Ship (SES)  
 
The Surface Effect Ship (SES) or Captured Air Bubble (CAB) craft, are similar to ACV’s in that 
they use a cushion of air to lift the vessel. However, the SES has rigid side walls that extend into 
the water. This prevents the SES from being amphibious but reduces the air pumping 
requirements and makes them more directionally stable. The side walls also contribute to the 
hydrostatic or hydrodynamic support of the craft allowing the SES to carry more payload.  They 
are usually propelled by water jets or super cavitating propellers.  
 

A supercavitating propeller is a kind of screw propeller so shaped as to create a steady 
cavitation space and prevents the cavitation vapor bubbles from collapsing on the blades 
where it might damage the blade.  

! 

 
There were two SES’s operated by the USN from about 1972-1975.  They were the SES -100 A 
and B model capable of traveling at speeds of over 80 knots. The “100" represented they 
displaced 100 LT.   The SES-100 was meant as an experimental platform carrying only 6 to 7 
people.   More recently, SES-200 displacing 200 LT was retired from the Naval Air Station at 
Patuxent River. 
 
Several European Navies are operating SESs as fast patrol boats, designed to operate in coastal 
waters. 
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2.2.2 Hydrodynamic Support  
 
Hydro is the prefix for water and dynamic indicates movement. The two basic types of vessels 
supported hydrodynamically are planing vessels and hydrofoils. 
 
 
2.2.2.1 Planing Vessels  
 
Planing vessels use the hydrodynamic pressures developed on the hull at high speeds to support 
the ship. They are very fast, some capable over 50 knots. In smooth water they ride very 
comfortably. When moving through waves, planing vessels ride very roughly, heavily stressing 
both the vessel structure and passengers. This was particularly true of older types which used 
relatively flat bottom hulls. Modifications to the basic hull form, such as deep V-shaped sections, 
have helped to alleviate this problem somewhat. Planing hulls require much larger engines for 
their size than displacement hulls. 
 
These factors above serve to limit the size of planing vessels. However, these ships are used in a 
variety of roles such as pleasure boats, patrol boats, missile boats, and racing boats. 
 
At slow speeds the planing craft acts like a displacement ship and is supported hydrostatically. 
 
 
2.2.2.2 Hydrofoils  
 
Hydrofoil craft are supported by underwater foils, not unlike the wings of an aircraft. At high 
speeds these underwater surfaces develop lift and raise the hull out of the water. Bernoulli’s 
Principle is often used to explain how a wing develops lift. These vessels are very fast, reaching 
speeds of 40 - 60 knots and compared to planing boats, hydrofoils experience much lower 
vertical accelerations in moderate sea states making them more comfortable to ride. 
 
The hydrofoil can become uncomfortable or even dangerous in heavy sea states due to the foils 
breaking clear of the water and the hull impacting the waves. If the seaway becomes too rough 
the dynamic support is not used, and the ship becomes a displacement vessel. 
 
The need for the hydrofoils to produce enough upward force to lift the ship out of the water 
places practical constraints on the vessel's size. Therefore, the potential crew and cargo carrying 
capacity of these boats is limited. Hydrofoils are also very expensive for their size in comparison 
to conventional displacement vessels. 
 
The U.S. Navy formerly used hydrofoils as patrol craft and to carry anti-ship missiles (Pegasus 
Class), but does not use them anymore due to their high acquisition and maintenance costs. 
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2.2.3 Hydrostatic Support  
 
Hydrostatically supported vessels are by far the most common type of water borne craft. They 
describe any vessel that is supported by “Archimedes Principle”.   
 
 Word definition of Archimedes Principle 
 

“An object partially or fully submerged in a fluid will experience a 
resultant vertical force equal in magnitude to the weight of the 
volume of fluid displaced by the object.” 

 
In EN200, this force is called the “buoyant force” or the “force of buoyancy”. 
 
Archimedes Principle can be written in mathematical format as follows. 

 
∇= gFB ρ  

 
 Where:   FB   is the magnitude of the resultant buoyant force (lb) 

   ρ    is the density of the fluid (lb-s2/ft4)  
    g    is the acceleration due to gravity  (32.17 ft/s2) 

   ∇   is the volume of fluid displaced by the object in (ft 3)  
 
 If you do not understand the units of density (lb-s2/ft4) ask your instructor to explain 

them. ! 
 
 
Example 2.1 Calculate the buoyant force being experienced by a small boat with a submerged 

volume of 20 ft3 when floating in seawater. (ρsalt = 1.99 lb-s2/ft4). 
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Example 2.2 What is the submerged volume of a ship experiencing a buoyant force of 4000 LT 

floating in fresh water? (ρfresh = 1.94 lb-s2/ft4 , 1 LT = 2240 lb) 
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2.2.3.1 Displacement Ships  
 
Hydrostatically supported ships are referred to as “displacement ships”, since they float by 
displacing their own weight in water, according to Archimedes Principle. These are the oldest 
form of ships coming in all sizes and being used for such varied purposes as hauling cargo, bulk 
oil carrying, launching and recovering aircraft, transporting people, fishing, and war fighting. 
  
Displacement hulls have the advantage of being a very old and common type of ship.  Therefore, 
many aspects of their performance and cost have been well studied. In comparison to other types 
of vessels the cost of displacement ships is fairly low with respect to the amount of payload they 
can carry. 
 
Disadvantages of displacement vessels include their limited speed and at times, their seakeeping 
ability (how they respond to ocean waves). 
 
2.2.3.2 SWATH  
 
A special displacement ship is the Small Waterplane Area Twin Hull (SWATH). Most of the 
underwater volume in the SWATH ship is concentrated well below the water's surface as shown 
in Figure 2-1. This gives them very good seakeeping characteristics. They also have a large open 
deck and are therefore useful in a variety of applications requiring stable platforms and a large 
expanse of deck space. SWATH vessels are currently utilized as cruise ships, ferries, research 
vessels, and towed array platforms. 
 
Two major disadvantages of SWATH ships are deep draft and cost. Additionally, these vessels 
present the designer with structural problems differing from other ships, particularly with respect 
to transverse bending moments. 
 
 
2.2.3.3 Submarines   
 
Submarines are hydrostatically supported but above 3 to 5 knots depth control can be achieved 
hydrodynamically due to the lift created by the submarines planes and body of the hull. 
 
Submarines have typically been used as weapons of war, but lately have also seen some non-
military application. Some submarines are being designed for the purpose of viewing underwater 
life and reefs, for example. Unmanned submersibles have been used for scientific purposes, such 
as finding the Titanic, as well as a wide variety of oceanographic research. 
 
There are many differences between the engineering problems faced by the surface ship designer 
and those faced by the submarine designer. Many of these differences will be covered in the last 
chapter of this course. 
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2.3 The Traditional Way to Represent the Hull Form  
 
A ship's hull is a very complicated 3 dimensional shape. With few exceptions an equation cannot 
be written that fully describes the shape of a ship. Therefore, engineers have placed great 
emphasis on the graphical description of hull forms. Until very recently, most of this work was 
done by hand. Today high-speed digital computers assist the engineer with the drawings, but 
they are not substitutes for imagination and judgment. 
 
Traditionally, the ship's hull form is represented graphically by a lines drawing. The lines 
drawing consist of projections of the intersection of the hull with a series of planes. The planes 
are equally spaced in each of the three dimensions. Planes in one dimension will be 
perpendicular to planes in the other two dimensions. We say that the sets of planes are mutually 
perpendicular or  orthogonal planes.  
 
The points of intersection of these planes with the hull results in a series of lines that are 
projected onto a single plane located on the front, top, or side of the ship. This results in three 
separate projections, or views, called the Body Plan, the Half-Breadth Plan, and the Sheer plan, 
respectively. Figure 2.2 displays the creation of these views. 
 
 Representing a 3 dimensional shape with three orthogonal plane views is a common 

practice in engineering. The engineer must be able to communicate an idea graphically so 
that it can be fabricated by a machinist or technician. In engineering terms this type of 
mechanical drawing is referred to as an “orthographic plate” because it contains three 
orthogonal graphic pictures of the object. Orthographic projections are used in all 
engineering fields. 

! 

 
To visualize how a “lines drawing” works, place the ship in an imaginary rectangular box whose 
sides just touch the keel and sides of the ship. The bottom, side and front of the box will serve as 
the basis for three orthogonal projection screens on which lines will be projected onto.  The lines 
to be projected result from the intersection of the hull with planes that are parallel to each of the 
three orthogonal planes mentioned. Refer to Figure 2.2. 
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Figure 2.2 – The Projection of Lines onto 3 Orthogonal Planes 
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2.3.1 The Half-Breadth Plan  
 
The bottom of the box is a reference plane called the base plane. The base plane is usually level 
with the keel. A series of planes parallel and above the base plane are imagined at regular 
intervals, usually at every foot. Each plane will intersect the ship's hull and form a line at the 
points of intersection. These lines are called “waterlines” and are all projected onto a single plane 
called the “Half Breadth Plan”. Figure 2.3 shows the creation of this plan. 
 
Each waterline shows the true shape of the hull from the top view for some elevation above the 
base plane which allows this line to serve as a pattern for the construction of the ship’s framing.  
The grid network on the half-breadth plan is straight lines that represent the orthogonal planes 
containing the buttock and station lines. 

 
 

Figure 2.3 – The Half-Breadth Plan 
 
 
 The waterlines referred to here have nothing to do with where the ship actually floats. 

These waterlines are the intersection of the ship’s hull with some imaginary plane above 
the base plane. There will be one plane above the base plane that coincides with the 
normal draft of the ship, this waterline is called the “Design Water Line”.  The design 
water line is often represented on drawings as “DWL” or “∇”. 

! 

 
 ! Since ships are symmetric about their centerline they only need be drawn for the 

starboard or port side, thus the name of “Half Breadth Plan”. 
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2.3.2 The Sheer Plan  
 
A plane that runs from bow to stern directly through the center of the ship and parallel to the 
sides of the imaginary box is called the centerline plane. A series of planes parallel to one side of 
the centerline plane are imagined at regular intervals from the centerline. Each plane will 
intersect the ship's hull and form a curved line at the points of intersection. These lines are called 
“buttock” or “butt lines” and are all projected onto a single plane called the “Sheer Plan”. Figure 
2.4 shows the creation of this plan. 
 
Each buttock line shows the true shape of the hull from the side view for some distance from the 
centerline of the ship. This allows them to serve as a pattern for the construction of the ship’s 
longitudinal framing. The grid network on the sheer plan is straight lines that represent the 
orthogonal planes containing the station lines and waterlines. 
 
 The centerline plane shows a special butt line called the “profile” of the ship. 
 
! 

 
 

Figure 2.4 – The Sheer Plan 
 
 The sheer plan gets its name from the idea of a sheer line on a ship. The sheer line on a 

ship is the upward longitudinal curve of a ship’s deck or bulwarks.  It is the sheer line of 
the vessel which gives it a pleasing aesthetic quality. 

! 
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2.3.3 The Body Plan  
 
Planes parallel to the front and back of the imaginary box running port to starboard are called 
stations. A ship is typically divided into 11, 21, 31, or 41 evenly spaced stations. The larger the 
ship the more stations will be made. An odd number of stations results in an even number of 
equal blocks between the stations. 
 
The first forward station at the bow is usually labeled station number zero. This forward station 
is called the forward perpendicular (FP). By definition the FP is located at a longitudinal position 
as to intersect the stem of the ship at the DWL. 
 
The after-most station is called the after perpendicular (AP). By definition the AP is located at a 
longitudinal position as to intersect the stern at the DWL for ships with a transom stern or 
alternatively through the rudder stock of the vessel. 
 
The station midway between the perpendiculars is called the midships station, usually 
represented by the       symbol. The length between perpendiculars has the symbol “Lpp”.  
Engineers typically use the Lpp for calculations. There is also an overall ship length “LOA” that 
might be a more useful number to use if you were docking the ship. Figure 2.5 displays these 
hull form characteristics. 

)( 

 
Each station plane will intersect the ship's hull and form a curved line at the points of 
intersection.  These lines are called “sectional lines” and are all projected onto a single plane 
called the “Body Plan”. Refer to Figures 2-6 and 2-7.  
   

 
 

Figure 2.5 – Hull Form Nomenclature 
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The body plan takes advantage of the ship's symmetry. Only half of each section is drawn 
because the other half is identical. By convention, the sections forward of amidships are drawn 
on the right side, and the sections aft of amidships are drawn on the left side. The amidships 
section is generally shown on both sides of the body plan. The vertical line in the center 
separating the left and right half of the ship is called the centerline. 
 
Each sectional line shows the true shape of the hull from the front view for some longitudinal 
position on the ship which allows this line to serve as a pattern for the construction of the ship’s 
transverse framing. The grid network on the body plan is straight lines that represent the 
orthogonal planes containing the buttock lines and waterlines. 
 

 
Figure 2.6 – The Body Plan 
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Figure 2.7a – Modified USNA Yard Patrol Craft Body Plan 
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Figure 2.7
2-15

b – Modified Lines Plan of the USNA Yard Patrol Craft 



2.4 Table of Offsets  
 
To calculate geometric characteristics of the hull using numerical techniques, the information on 
the lines drawing is converted to a numerical representation in a table called the table of offsets. 
 
The table of offsets lists the distance from the center plane to the outline of the hull at each 
station and waterline. This distance is called the “offset” or “half-breadth distance”. By 
convention this is the “y” direction. 
 
There is enough information in the table of offsets to produce all three plans of the lines plan. 
The table opposite is the table of offsets for the Naval Academy’s yard patrol craft. 
 
You may need to use the table of offsets when you are asked to calculate one of the geometric 
properties of the hull such as sectional area, waterplane area, submerged volume and the 
longitudinal center of flotation. You will learn how to do this in the remaining portion of this 
chapter. 
 
Of the 2 tables, Half-Breadths from the Centerline is the more useful as will be explained when 
numerical calculations are performed in the next section. 
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USNA YARD PATROL CRAFT - TABLE OF OFFSETS 
  
Half-breadths from Centerline (ft)    
Stations 0 1 2 3 4 5 6 7 8 9 10

Top of Bulwark 3.85 8.14 10.19 11.15 11.40 11.40 11.26 11.07 10.84 10.53 10.09

18' Waterline 3.72 - - - - - - - - - -

16' Waterline 3.20 7.92 10.13 11.15 - - - - - - -

14' Waterline 2.41 7.36 9.93 11.10 11.39 11.40 11.26 11.07 10.84 10.53 10.09

12' Waterline 1.58 6.26 9.20 10.70 11.19 11.32 11.21 11.02 10.76 10.45 10.02

10' Waterline 0.97 5.19 8.39 10.21 10.93 11.17 11.05 10.84 10.59 10.27 9.84

8' Waterline 0.46 4.07 7.43 9.63 10.64 10.98 10.87 10.66 10.41 10.07 9.65

6' Waterline 0.00 2.94 6.25 8.81 10.15 10.65 10.56 10.32 9.97 9.56 9.04

4' Waterline - 1.80 4.60 7.23 8.88 9.65 9.67 9.25 8.50 7.27 3.08

2' Waterline - 0.72 2.44 4.44 5.85 6.39 5.46 0.80 - - -

 
Heights Above Baseline (ft)    
Stations 0 1 2 3 4 5 6 7 8 9 10

Top of Bulwark 18.50 17.62 16.85 16.19 15.65 15.24 14.97 14.79 14.71 14.71 14.70

10' Buttock - - 14.20 9.24 5.63 4.48 4.49 5.11 6.08 7.52 11.75

8' Buttock - 16.59 9.14 4.82 3.24 2.71 2.77 3.16 3.71 4.36 4.97

6' Buttock - 11.51 5.65 3.00 2.07 1.88 2.10 2.55 3.10 3.69 4.30

4' Buttock - 7.87 3.40 1.76 1.32 1.41 1.78 2.30 2.86 3.45 4.08

2' Buttock 13.09 4.36 1.63 0.82 0.73 1.02 1.53 2.10 2.68 3.27 3.91

Keel 6.00 0.66 0.10 0.09 0.28 0.71 1.34 1.95 2.54 3.14 3.76
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2.5 Hull Form Characteristics    
 
The hull form characteristics applicable to the profile view of a ship have already been discussed, 
see Figure 2.5. However, there are a number of others which are relevant to a view of the ship 
from the bow or stern 
 
As mentioned previously, the keel is at the bottom of the ship. The bottoms of most ships are not 
flat. Distances above the keel are usually measured from a constant reference plane, the 
baseplane. The keel is denoted by "K" on diagrams with the distance above the keel being 
synonymous with the distance above the baseline. 
 
 
2.5.1 Depth (D), Draft (T) and Beam (B).  
  
The depth of the hull is the distance from the keel to the deck. Sometimes the deck is cambered, 
or curved, so the depth may also be defined as the distance from the keel to the deck at the 
intersection of deck and side or the “deck at edge”. The symbol used for depth is "D". The depth 
of the hull is significant when studying the stress distribution throughout the hull structure. 
 
The draft (T) of the ship is the distance from the keel to the surface of the water. The mean draft 
is the average of the bow and stern drafts at the perpendiculars. The mean draft is the draft at 
amidships. 
 
Freeboard is the difference between “D” and “T”. 
 
The beam (B) is the transverse distance across each section. Typically when referring to the 
beam of a ship, the maximum beam at the DWL is implied. 
 
Figure 2.8 shows the dimensions of these terms on a typical midship section of a ship. 
 
 
2.5.2 Flare and Tumblehome  
 
The forward sections of most ships have a bow characteristic called flare. On a flared bow, the 
half-breadths increase as distance above the keel increases.  Flare improves a ship's performance 
in waves, and increases the available deck space.  
 
Tumblehome is the opposite of flare. It is uncommon on modern surface ships. However, sailing 
yachts and submarines do have tumblehome. 
 
Figure 2.9 shows flare and tumblehome. 
 

 2-18 



 

Beam (B)

Depth (D)

CL

Draft (T)

Freeboard

Camber

K
�

W L

 
Figure 2.8 – Hull Form Characteristics 

 

Tumblehome Flare 
 

Figure 2.9 – Ships with Flare and Tumblehome  
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2.6 Centroids  
 
A centroid is defined as the geometric center of a body.  
 
The center of mass is often called the center of gravity and is defined as the location where all 
the body’s mass or weight can be considered located if it were to be represented as a point mass.  
 
If the object has uniform density and thickness, then the centroid will be coincident with the 
body’s center of mass.   
 
Conceptually, and in their application to ships, there is a big difference between a centroid and a 
center of mass. 
 
Both centroids and centers of mass can be found by doing weighted averages as discussed in 
chapter one.  For example, Figure 2.10 is a two dimensional uniform body with an irregular 
shape. The “Y” location of the centroid of this shape can be found by breaking the area up into 
little pieces and finding the average “Y” distance to all the area. This can be repeated for the “X” 
location of the centroid. This will result in the coordinates of the centroid of the area shown with 
respect to the arbitrary coordinate system chosen. 

 
 
 
 

a1
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X

 
  

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 2-10 – Showing the Calculation of a Centroid of an Irregular Plane Area 
 

 
 
 
 



 

The following steps show mathematically how to do the weighted average. 
 

1. “Weight” each differential area element by its distance from some reference (i.e., y1a1, 
y2a2,… ynan).   In Figure 2.10, the reference is the x-axis. 

 
2. Sum the products of area and distance to calculate the first moment of area about the 

reference: 
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3. Divide the first moment of area by the total area of the object to get the position of the 

centroid with respect to the original reference.  Note the ratio of the small piece of area 
over the total area is the weighting factor as discussed in Chapter One.  This represents a 
weighted average based on an area weighting. 
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where:  y   is the vertical location of the centroid from the x-axis (ft) 
    AT  is the total area of the shape (ft2) 
    yi   is the distance to element “I” (ft) 
    ai   is the area of element “I” (ft2) 
 
 If we were to use masses instead of areas then the center of mass would be found. 
 

! 
 

At this point prove to yourself that the coordinates found for the centroid would be the 
same as those found for the center of mass if the body is uniform. 
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2.7 Two Very Important Centroids - The Center of Flotation and The 

Center of Buoyancy.    
 
The concept of a centroid is important in Naval Engineering because it defines the location of 
two extremely useful points in the analysis of the statical stability of a ship. 
 
 
2.7.1 Center of Flotation (F)  
 
The centroid of the operating waterplane is the point about which the ship will list and trim. This 
point is called the center of flotation (F) and it acts as a fulcrum or pivot point for a floating ship.  
 
The distance of the center of flotation from the centerline of the ship is called the “transverse 
center of flotation” (TCF). When the ship is upright the center of flotation is located on the 
centerline so that the TCF = 0 feet. 
 
The distance of the center of flotation from amidships (or the forward or after perpendicular) is 
called the “longitudinal center of flotation” (LCF). When writing a LCF distance you must state 
if it’s from midships or from one of the perpendiculars so the person reading the value will know 
where it’s referenced from. If the reference is amidships you must also indicate if the distance is 
forward or aft of midships. By convention, a negative sign is used to indicate distances aft of 
midships. 
 
The center of flotation is always located at the centroid of the current waterplane. When the ship 
lists to port or starboard, or trims down by the bow or stern, or changes draft, the shape of the 
waterplane will change, thus the location of the centroid will move, leading to a change in the 
center of flotation. 
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2.7.2 Center of Buoyancy (B)  
 
The centroid of the underwater volume of the ship is the location where the resultant buoyant 
force acts. This point is called the center of buoyancy (B) and is extremely important in static 
stability calculations.   
 
The distance of  the center of buoyancy from the centerline of the ship is called the “transverse 
center of buoyancy” (TCB). When the ship is upright the center of buoyancy is located on the 
centerline so that the TCB = 0 feet. 
 
The vertical location of the center of buoyancy from the keel (or baseplane) is written as “VCB” 
or as "KB" with a line over the letters “KB” indicating it is a line segment from point “K” to 
point “B”.  
 
The distance of the center of buoyancy from amidships (or the forward or after perpendicular) is 
called the “longitudinal center of buoyancy” (LCB).    When writing a LCB distance you must 
state if it’s from midships or from one of the perpendiculars so the person reading the value will 
know where it’s referenced from. If the reference is amidships you must also indicate if the 
distance is forward or aft of midships. Recall that a negative sign is used to indicate distances aft 
of midships. 
 
The center of buoyancy is always located at the centroid of the submerged volume of the ship. 
When the ships lists to port or starboard, or trims down by the bow or stern, or changes draft, the 
shape of the submerged volume will change, thus the location of the centroid will move and alter 
the center of buoyancy. 
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2.8 Fundamental Geometric Calculations    
  
As previously stated, the shape of a ship's hull cannot usually be described by mathematical 
equations. In order to calculate fundamental geometric properties of the hull, naval architects use 
numerical methods. The trapezoidal rule and Simpson's 1st Rule are two methods of numerical 
integration frequently used. In this course Simpson's 1st Rule will be the numerical integration 
technique used to calculate geometric properties because of its greater accuracy when using a 
small number of points.  
 
 
2.8.1 Simpson’s 1st Rule Theory  
 
Simpson's 1st Rule is used to integrate a curve with an odd number of ordinates evenly spaced 
along the abscissa as in Figure 2.11. 
 
Simpson's Rule assumes that the points are connected three at a time by an unknown  
second order polynomial. 
 

 

 Po(-s,yo) 

Y 

P2(s,y2) 

P1(0,y1) 

y(x)=cx2 + dx + e 

        -s                          0                        s            X 

 
Figure 2-11 

 
The area under the curve over the range of x from -s to s is given by: 
 

∫ +=++= )62(
3

)( 22 ecssdxedxcxArea  

The coordinates of the points on the curve, P0, P1, and  P2, are solutions to the second order 
polynomial that describes the curve between the points: 
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and therefore the following is true: 

)4(
3
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210

2
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yyysArea
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If the curve extends over more than three ordinates, then the integration scheme may be 
extended. For example: to calculate the area under a curve over five evenly spaced points, x = x0 
to x =x4, do multiple calculations of area three points at a time 
 
    (1/3)(s)(y0 + 4y1 + y2 ) 
        + (1/3)(s)(    y2 + 4y3 + y4) 
                                                                                                                                      
 Area  = (1/3)(s)(y0  +  4y1  +  2y2  +  4y3  +  y4)  
 
           for x = x0 to x =x4. 
 
This integration technique may be used for any odd number of equally spaced data points  
 

[ ])()1()()4()()2(...)()4()()2()()4()()1(
3

)( 123210 nnn xyxyxyxyxyxyxysdxxy +++++++= −−∫  

 
2.8.2 Application of Simpson’s 1st Rule  
 
To apply Simpson’s 1st rule to any integral replace the integral by 1/3, change the differential to 
the equi-distant spacing (dx to an “s” in this case), multiply by any constants, and multiply by the 
Simpson’s sum.  The Simpson’s sum is the sum of the products of the multipliers times their 
respective variables magnitudes.  The multipliers will always start with a “one” for the first term, 
a “four” for the second term, and continue to repeat the sequence “two” and “four” for the 
remaining terms, however always ending with a “four” and a “one” for the last two terms.  In 
order to establish this pattern an odd number of terms are required with the smallest number of 
terms being 3. 
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Student Exercise Use Simpson’s 1st Rule to calculate the area of common shapes of known 

dimensions. For example: 
 
    Square 
 
    Triangle 
 
    Semi-circle 
 
 
 
 
 Question 1: To what shape does Simpson’s 1st Rule give the most accurate area? 
 
 
 
 
 
 
 
 
 Question 2: What effect does increasing the number of ordinates have upon your 

answer? 
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2.9 Numerical Calculations of  Waterplane Area, Sectional Area, 
Submerged Volume,  LCF, VCB, and LCB Using Simpson’s 1st Rule.   
 
 
 In this course you will only be responsible for the numerical calculation of 

waterplane areas, sectional areas, submerged volumes, and longitudinal centers of 
flotation. 

! 

 Calculations of VCB and LCB are provided for the interested student. 
 
 
Please always follow these steps when doing these calculations.  This is not an option!  The 
example problems that follow have been done this way. 
 
  1. Start with a picture of what you are about to integrate.   
 

 2. Show the differential element you are using. 
 
  3. Properly label your axis and drawing. 
 

 4. Write out the generalized calculus equation written in the same symbols 
you used to label your picture.   

 
  5. Write out Simpson’s equation in generalized form.   
 

 6. Substitute each number into the generalized Simpson’s equation. 
 
  7. Calculate a final answer.   
 
 
 The final numerical answer is the least important part of this. The idea is not to speed 

through these calculations to get a final answer but to show each step so we can see that 
you understand these equations and can build them from first principles each time. 

! 
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2.9.1 Waterplane Area  
 
A waterplane is described numerically by half-breadths at each station. Begin by drawing a 
picture of a typical operating waterplane area with the proper “X-Y” axis. Draw a typical 
differential unit on this diagram and label the base and height of this rectangle. 
 

 
 
Then and only then, write out the calculus equation by summing up all the differential pieces. 
The “2" is required since your using half breadths. 
 

∫∫ ==
ppL

Area
WP dxxydAA

0

)(22  

 
where:  Awp  is the waterplane area (ft2) 

   dA   is the differential area of one element (ft2) 
   y(x)  is the “y” offset or half-breadth at each value of “x” (ft) 
   dx   is the differential width of one element (ft) 
 
Write out the Generalized Simpson’s Equation based on your calculus equation. 
 

[ ]...))(2())(4())(1(
3
12 210 +++∆= yyyxAWP  

 
Notice the “dx” becomes a “x” and it is now the distance between stations. In a real problem the 
next step would be to substitute each number into the generalized equation and calculate a final 
answer. 
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Example 2.3 The offsets for the 16-ft waterline of a particular ship with five stations are given 
below. The length between perpendiculars is 326.4 feet. Compute the waterplane area for the 
sixteen foot waterline. 
 

16-foot Waterplane 
Station        0        1        2        3        4 

Half-breadth       0.39 ft       12.92 ft       20.97 ft       21.71 ft     12.58 ft 

 
Solution: 
 

 
Picture and differential element: 

 

 
 equation: 

 
Simpson’s Equation: 

 
 
 
 

Calculus

∫∫ ==
ppL

Area
WP dxxydAA

0

)(22  

 

[ ]...))(2())(4())(1(
3 210 +++∆ yyyxWP  12=A

 
 
 Station spacing calculation: 

ftft
n
L

x pp 6.81
4
4.326

1
==

−
=∆  

 
here n = the number of stations. 

 
w

 Substitution of numbers and numerical answer: 

Awp= (2/3)(81.6 ft)[0.39+ 4(12.92) + 2(20.97) + 4(21.71) + 12.58 ] ft = 10,523 ft2 
 

he area calculated is more accurate when the distance (or equi-distant interval) between stations 

 

 
T
decreases. A ship’s length is typically divided into 11, 21, 31, or 41 stations yielding 10, 20, 30, 
and 40 equi-distant intervals respectively. 
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2.9.2 Sectional Area   
 
A sectional area is described numerically by half-breadths at each elevation above the baseline to 
some waterline. There is a different sectional area at each station. Begin by drawing a picture of 
a typical sectional area at a station with the proper “Y-Z” axis. Draw a typical differential unit on 
this diagram and label the base and height of this rectangle. 
Then and only then, write out the calculus equation by summing up all the differential pieces.   
 

 
The “2" is required since your using half breadths. 

 

dzzydAA
T

oArea
t ∫∫ == )(22sec  

 
Where:  Asect  is the sectional area up to some chosen waterline (ft2) 

   dA   is the differential area of one element (ft2) 
   y(z)  is the “y” offset or half-breadth at each value of “z” (ft) 
   dz    is the differential width of one element (ft) 
 
Write out the Generalized Simpson’s Equation based on your calculus equation. 
 

[ ]...))(2())(4())(1(
3
12 210sec +++∆= yyyzA t  

 
Notice the “dz” becomes a “z” and it is now the distance between waterlines. In a real problem 
the next step would be to substitute each number into the generalized equation and calculate a 
final answer. 

 2-30 



 

Example 2.4 The offsets for station 5 of a particular ship are given below. Compute the 
sectional area for station 5 up to the 16 foot waterline. 

 
Station 5 

Waterline         0 ft         4 ft         8 ft         12 ft         16 ft 

Half-breadth        0.58 ft      14.48 ft       19.91 ft       21.88 ft      22.59 ft 

 
Solution: 
 

 
 
Picture and differential lement:  e

 
 
 
 
 
 
 
 
 
 
 

Calculus equation:  

dzzydAA
T

oArea
t ∫∫ == )(22sec  

 
 
Simpson’s Equation: 

[ ]...))(2())(4())(1(
3
12 210sec +++∆= yyyzA t  

 
Substitution of numbers and numerical answer: 

 
Asect = (2/3)(4 ft)[0.58 + 4(14.48) + 2(19.91) + 4(21.88) + 22.59 ] ft 

 
  Asect = 556 ft2 
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2.9.3 Submerged Volume: Longitudinal Integration  
 
The submerged volume can be calculated by integration of the sectional areas over the length of 
the ship. Begin by drawing a picture. The picture is harder to draw since it is a three dimensional 
shape. It is rather hard to show the differential volume but it is the product of the sectional area 
with the differential thickness “dx”.  Alternatively you could sketch the sectional area curve. 
 

    
 
 Z dx 

 

OR 

X 

Y  
 
Then and only then, write out the calculus 

equation by summing up all the differential pieces. Notice no “2" is required since you are using 
full areas already. 
 

∫∫ ==∇=
ppL

t
Volume

Ssubmerged dxxAdVV
0

sec )(  

 
 where:  ∇S   is the submerged volume (ft3) 
   dV   is the differential volume of one element (ft3) 
   A sect (x)  is the value of the sectional area at each value of “x” (ft2) 
   dx   is the differential width of one element (ft) 
 
Write out the Generalized Simpson’s Equation based on your calculus equation. 

 

[ ]...))(2())(4())(1(
3
1

210 +++∆=∇ AAAxS  

 
Notice the “dx” becomes a “x” and it is now the distance between stations.  In a real problem the 
next step would be to substitute each number into the generalized equation and calculate a final 
answer. 
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Example 2.5 The full sectional areas for a particular ship are given below. Compute the 
submerged volume at the 16 foot waterline. The length between perpendiculars is 140 feet. 
 

Sectional Areas to 16 ft Waterline 
Station          0         1         2         3         4 

Sectional Area  (ft2)       12.6      242.7       332.0       280.5       92.0 

 
Solution: 
 

 
 
Picture and differential element:  

 
 
 
 
 
 
 

 
Calculus equation: 

∫∫ ==∇=
ppL

t
Volume

Ssubmerged dxxAdVV
0

sec )(  

 
 
Simpson’s Equation: 
 

[ ]...))(2())(4())(1(
3
1

210 +++∆=∇ AAAxS  

 
Station spacing calculation: 

ftft
n
L

x pp 35
4

140
1

==
−

=∆  

 
Substitution of numbers and numerical answer: 

 
 ∇S  = (1/3)(35 ft)[12.6 + 4(242.7) + 2(332.0) + 4(280.5) + 92 ] ft2 =  33,383 ft3 
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2.9.4 Longitudinal Center of Flotation (LCF)   
 
The centroid of the current waterplane area is the center of flotation  (F). Recall, this is the point 
about which the ship lists and trims.   
 
The Longitudinal Center of  Flotation (LCF) is the distance from a longitudinal reference point 
to the center of flotation. Usually the reference is the forward perpendicular or midships. When 
the reference is the forward perpendicular, all distances to the center of flotation are positive. 
When the reference is midships, distances aft of midships are assigned as negative and distances 
forward of midships are assigned as positive by convention. 
 
 Most students mix up the point (F) with the distance to the point (LCF).  Please try to 

keep them straight in your head when using them. 
 

! 

One of the easiest ways to construct the calculus equation for the calculation of the LCF is to use 
the idea of weighted averages. The LCF is nothing more than the average “x” distance to all the 
waterplane area. Recall the following statements from chapter 1. 
 

“To find the weighted average of any variable “X”, take the variable you are 
averaging and multiply it by the weighting factor for that value of  “X”. Do this 
for all values and then sum up. In calculus form this translates to the following 
equation.” 

∑

∑

∫

≅

≅

=

))((

)')((

)'()(""var

totalthe
piecesmallaXofvaluea

factorweightingsitXofvaluea

factorweightingsitXofvalueaXiableofaverageThe

Xall

Xall

 

 
Applying these ideas to the calculation of LCF we realize that the variable being averaged is the 
“x” distance and the weighting factor is a ratio of areas. The small piece of area is the differential 
waterplane area and the denominator is the total waterplane area. You may have to do a separate 
calculation to find the total waterplane area as shown in Section 2.9.1. 
 
First, draw a picture of a typical waterplane area  with the proper “X-Y” axis.  Draw a typical 
differential unit of area on this diagram and label the base and height of this rectangle. 
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Write out the weighted average equation as discussed above. The “2" is required since your 
using half breadths. 
 
Write out the Generalized Simpson’s Equation based on your calculus equation. 
 

Notice the “dx” becomes a “∆x” and it is now the distance between stations. “x 0" is the 
distance from the reference point to station 0. “x1" is the distance from the reference point 
to station 1, and so on. The reference plane is either the FP or midships. Recall, when 
using midships as a reference you must be sure to include a negative sign for distances aft 
of midships. 

 
In a real problem the next step would be to substitute each number into the generalized 
equation and calculate a final answer. 

 
Sometimes students feel more comfortable making tables to do these calculations. It helps to 
organize your work and makes it easy to program in a spreadsheet. The following example 
shows how such a table might be constructed and used as an aid in the calculation of LCF. 
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Example 2.6: The offsets for the 16-ft waterline of a particular ship with five stations are given 
below.  The length between perpendiculars is 326.4 feet. The waterplane area for the 16 foot 
waterline is 10,523 square feet. Compute the LCF for the sixteen foot waterline. 

 
16-foot Waterplane 

Station        0        1        2        3        4 

Half-breadth       0.39 ft       12.92 ft       20.97 ft       21.71 ft     12.58 ft 

 
Solution: 
 

 
Picture and differential element: 

 
 
 
 
 
 

Calculus equation: 

dxxyx
A

LCF

A
dxxyx

A
dAxLCF

pp

pp

L

WP

WP

L

Area WP

∫

∫∫

⋅=

==

0

0

)(2

)(2
 

 
Simpson’s Equation: 

[ ]))()(1())()(4())()(2())()(4())()(1(
3
12

4433221100 yxyxyxyxyxx
A

LCF
WP

++++∆=  

 
Station spacing calculation: 
 

ftft
n
L

x pp 6.81
4
4.326

1
==

−
=∆  

 
Substitution of numbers with the aid of a table and numerical answer: 
 

(next page) 
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16-foot Waterplane  

Station Half-Breadth 
 

 y(x) 
 (ft) 

Distance 
from FP 

x 
 (ft) 

   Moment  
 

x  y(x) 
(ft2) 

Simpson 
Multiplier 

Product of 
Multiplier 

and Moment 
(ft2) 

0  0.39       81.6(0) = 
0 

0 1 0 

1 12.92       81.6(1) = 
81.6 

1054.3 4 4217.2 

2 20.97       81.6(2) = 
163.2 

3422.3 2 6844.6 

3 21.71       81.6(3) = 
244.8 

5314.6 4 21258.4 

 4 12.58       81.6(4) = 
326.4 

4106.1 1 4106.1 

    Sum    =    36426.3  

         
 
 

[ ]
larperpendicuforwardtheofaftftLCF

ftft
ft

LCF

3.188

3.426,366.81
3
1

523,10
2 2

2

=

=
 

 
 

 LCF is commonly expressed as a distance from amidships.  In this case...  ! 
 

LCF = LPP / 2 - 188.3 ft 
 

LCF =(326.4 ft)/2 - 188.3 ft   = - 25.1  ft 
 

The minus indicates aft of amidships. Negative values should be explained in your answer. 
 

LCF = 25.1 ft aft of midships 
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2.9.5 Centroid: Vertical Center of Buoyancy (KB)    (OPTIONAL)  
 

The center of buoyancy (B) is the centroid of the ship's underwater volume. The vertical location 
of the center of buoyancy above the keel is expressed as KB, and is found by dividing the first 

moment of the underwater volume about the keel by the total underwater volume. 
 

∇
= ∫ dzzAz

KB WP )(
 

 
 where:  z   is the height of the waterplane above the keel (ft) 

AWP(z)  is the waterplane area at each waterline (ft2) 
dz is the interval between waterlines (ft) 
∇  is the underwater hull volume (ft3) 

 
Numerically, the products z Awp(z) will be integrated using Simpson's 1st Rule. The following 
example illustrates this calculation.  The submerged volume used was calculated in section 2.9.3. 

 
Draft, z  

(ft) 
Awp(z) 

(ft2) 
z Awp(z) 

(ft3) 
0 415.3 0 

4 1423 5692 

8 2310 18,480 

12 2877 34,524 

16 2988 47,808 

  
 
 

∫ dzzAz WP )(   = (1/3)(4 ft)[0 + 4(5692) + 2(18,480) + 4(34,524) + 47,808]ft3 

        
  = 327,510 ft4 

 

   
∇

= ∫ dzzAz
KB WP )(

 =  327,510 ft4/33,383 ft3 

                     = 9.81ft 
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2.9.6 Centroid:  Longitudinal Center of Buoyancy (LCB)   (OPTIONAL)  
 

The longitudinal location of the center of buoyancy with respect to a longitudinal reference plane 
is expressed as LCB, and is found by dividing the first moment of the underwater volume about 

the forward perpendicular by the total underwater volume.   
 

∇
= ∫ dxxAx

LCB Sect )(
 

 
 where:  x is the distance of the station aft of the forward perpendicular (ft) 
   As(x) is the sectional area at each station (ft2) 
   dx is the interval between each station (ft) 
   ∇ is the underwater volume (ft3) 

 
The products x As(x) will be integrated numerically using Simpson's 1st Rule. Underwater 
volume corresponds to the draft of interest and has been calculated previously in section 2.9.3.  

 
Station Spacing = 35 ft 

Station As (ft2) x (ft) xAs (ft3) 

0 12.6 0 0 

1 242.7 35 8494.5 

2 332.0 70 23240 

3 280.5 105 29452.5 

4 92.0 140 12880 

 
 
1st Moment of Volume = (1/3)(35 ft)[0 + 4(8494.5) + 2(23240) + 4(29452.5) + (12880)]ft3 
 
    = 2,463,400 ft4 
 
 

          
∇

= ∫ dxxAx
LCB Sect )(

    = 2,463,400 ft4 / 33,383 ft3 = 73.8 ft aft of FP 

 
 
In this example LPP is 140 feet; therefore, LCB is 3.8 feet aft of amidships.  Many ships will have 
LCB's and LCF's aft of amidships because bows are typically narrow in order to minimize 
resistance. 
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2.9.7 Transverse Second Moment of Area of a Waterplane     (OPTIONAL)   
  
The transverse second moment of area of a waterplane about the centerline (IT) is useful when 
determining whether a ship will remain upright or list to one side, and in estimating the vertical 
position of the transverse metacenter above the keel. 
 
The approach taken is to divide the waterplane (actually half of the waterplane) into small 
rectangles. The height of a rectangle is the half-breadth y(x), and the width is the station spacing, 
dx.  The second moment of area of each rectangle is summed resulting in  the second moment of 
area of the entire waterplane. 
 
The second moment of area of a rectangle is found from the integral �y2 dA in general. The 
second moment of area of a rectangle about its own centroid is (1/12)y3dx. To perform the 
summation desired,  the second moment of area of all the rectangles must be referenced to the 
same axis. The Parallel Axis Theorem is used to calculate the second moment of area of a shape 
about an axis parallel to its centroidal axis. Mathematically, the theorem states the following: 
 

2AdII cd +=  
 where:  Id  is the second moment of area of the shape about an axis (the desired 

axis) other than the centroidal axis (ft4) 
   Ic  is the second moment of area of the shape about the centroidal axis (ft4) 
   A  is the area of the shape (ft2) 
   d  is the distance between the centroidal axis and the desired axis (ft) 
 
 
 Figure 2.12 provides an example of these quantities. 
 
 

! Notice that the second moment of area of a shape is always least about the centroidal 
axis. 

x

y

y

Area, A

desired axis

centroidal axis

d

dx  
 

Figure 2.12 – Diagram for the parallel axis theorem 
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Applying the Parallel Axis Theorem to the rectangle under consideration gives the following: 
   
   I(centerline) = (1/12)y3dx + (y dx)(y/2)2 =  (1/3)y3dx.   
 
This makes the integral for the transverse second moment of area of the entire waterplane: 
   

    ∫ ∫== dxydxyIT
3

3

3
2

3
2   

 
To evaluate this integral numerically, the cube of each half-breadth will be integrated, and the 
result will be multiplied by (2/3). 
 

Station Half-Breadth (ft) (Half-Breadth)3(ft3) 

0 0.39 0.0593 

1 12.92 2156.7 

2 20.97 9221.4 

3 21.71 10,232 

4 12.58 1990.9 

 
I T  = (2/3) [ (1/3)(81.6 ft) {0.0593 + 4(2156.7) +2(9221.4) +4(10,232) + 1990.9} ]ft3 

    
         I T  = 1,269,126 ft4 
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2.9.8 Longitudinal Second Moment of Area of a Waterplane   (OPTIONAL)  
 
The longitudinal second moment of area of the waterplane about the LCF is used when solving 
trim problems. The calculation weighs each piece of area, y dx, by the square of its distance from 
a reference, in this case amidships. Integrating the products x2y dx adds up the second moments 
of area of all the differential pieces giving the second moment of area of the entire shape about 
amidships. 
 
The required integral is  IL = ∫x2y dx.  In order to apply Simpson's 1st Rule, the quantity x2y must 
be determined for each station. Simpson’s algorithm and station spacing take care of the ∫ and the 
dx parts of the equation.  
 

16-foot Waterplane (Station Spacing = 81.6 ft) 
Station Half Breadth, y  

 
(ft) 

Distance from 
midships, x 
(ft) (- Aft) 

x2y 
 

(ft3) 
0 0.39 163.2 10,387 

1 12.92 81.6 86,029 

2 20.97 0 0 

3 21.71 -81.6 144,557 

4 12.58 -163.2 335,059 

 
 I L  (midships) = ∫x2 y dx  
 
 I L  (midships) = (2)(1/3)(81.6 ft)[10,387 + 4(86,029) + 2(0) + 4(144,557) + 335,059]ft3  
 
 I L  (midships) = 68,967,776 ft4 
 
 
What is really desired is the second moment of area about the LCF, so the Parallel Axis Theorem 
must be used. 
 
   I L  (LCF)  =  I L (amidships) - A wp   d2 
 
The term Awp  d2  is subtracted because the LCF is the centroid of the waterplane. Awp  is the area 
of the waterplane of interest, previously calculated.  The distance between the two axes is d, or 
the distance from amidships to the LCF, also calculated previously. 
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So substituting the previous values 
 
   I L (LCF)  =  I L  (amidships) - A wp  d2  
 
   I L (LCF)  =  68,967,776 ft4  -  (10,523 ft2)(23.0 ft)2 
 
   I L (LCF)  =  63,401,109 ft4 
 
 
This completes the numerical integrations necessary for determining all of the quantities graphed 
on the curves of form.  Some additional knowledge is given in the next chapter concerning the 
specific uses of these quantities.  
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2.10 Curves of Form           (NOT OPTIONAL!)   
 
All the geometric properties of a ship as a function of mean draft have been computed and put 
into a single graph for convenience. This graph is called the “curves of form”. Each ship has 
unique curves of form. There are also tables with the same information which are called the 
tabular curves of form. 
 
It is difficult to fit all the different properties on a single sheet because they vary so greatly in 
magnitude. To fit all the curves on a single sheet of paper one of two things must be done.   
 

One: Provide a series of  different scales on the “x” axis so that each property has its 
own “x” axis scale. 

   
Two: Plot each characteristic against a common scale on the “x” axis and use a scaling 

factor to bring the curves numerically closer. 
 
 
Using the second method requires you to read a value off the common scale and then multiply 
that value by the curves scale factor to obtain the real value. Each scale factor also has units 
associated with it.  Don’t forget to do this extra step! 
 
 There are curves of form for common navy ships in the back of this text under the “Ship’s Data” 
section. For convenience the curves of form for the Naval Academy’s Yard Patrol Craft has been 
provided opposite at Figure 2.13 as well as in the back in the “Ship’s Data” section. 
 
The curves of form assume that the ship is floating on an even keel (i.e. zero list and zero trim). 
If the ship has a list or trim then the ship’s mean draft should be use when entering the curves of 
form. 
 
 Keep in mind that all properties on the “curves of form” are functions of mean draft and 
geometry. When weight is added, removed, or shifted, the operating waterplane and submerged 
volume change form so that all the geometric properties also change.   
 
 
 In typical calculations only small draft changes occur so that the properties in the curves 

of form also only undergo small changes. This means for most problems it doesn’t matter 
if you look up the properties at the initial mean draft, final mean draft, or average mean 
draft. Numerically they all will be very close and shouldn’t affect your final answer. If 
the draft changes by an amount that causes large changes in the properties, then an 
average draft of the initial and final drafts should be used. 

! 
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Figure 2-13 - USNA Yard Patrol Craft Curves of Form
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2.10.1 Curve of Form Definitions  
 
The following is a list of each characteristic found on the “curves of form” with a brief 
explanation of its meaning. 
 
 
2.10.1.1 Displacement  (∆) 
 
This is the weight of the water displaced by the ship for a given draft assuming the ship is in salt 
water with a density of 1.99 lb s2 / ft4.  For a freely floating ship in salt water this is numerically 
equal to the weight of the ship. The typical unit on displacement for Naval Ships is the long ton. 
One long ton (LT) equals 2240 lb.   
 
 Other disciplines of science also use the word ton as follows. A long ton (LT) is the same 

as the ton equal to 2240 lb. A short ton (ST) is equal to 2000 lb .  A metric ton (Tonne) is 
equal to 1000 kg.  In this course “ton” will always mean 2240 lb. 

! 

 
 
2.10.1.2 LCB 
 
This is the longitudinal center of buoyancy. It is the distance in feet from the longitudinal 
reference position to the center of buoyancy. The reference position could be the FP or midships.  
If it is midships remember that distances aft of midships are negative. 
 
 
2.10.1.3 VCB 
 
This is the vertical center of buoyancy.  It is the distance in feet from the baseplane to the center 
of buoyancy.  Sometimes this distance is labeled KB with a bar over the letters. 
 
 
2.10.1.4 Immersion or TPI 
 
TPI stands for tons per inch immersion or sometimes just called immersion. It is just what the 
words say it is. TPI is defined as the tons required to obtain one inch of parallel sinkage in salt 
water. Parallel sinkage is when the ship changes it’s forward and after drafts by the same amount 
so that no change in trim occurs. 
 
To obtain just parallel sinkage the weight added would need to be “effectively” added to the 
center of  flotation because the center of flotation is the pivot point of the ship while it is floating.  
The units on TPI are long tons per inch.  If an equivalent weight is removed than you lose one 
inch of parallel sinkage. You will be using TPI in chapter 3 when you do trim problems. 
 
 An approximate formula for TPI based on the area of the waterplane can be derived as 

follows: ! 
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Note 1:   Archimedes equation has been used to convert weight to the product of volume, density, 

and the magnitude of the acceleration of gravity. 
 
Note 2:  TPI is defined for a ship in salt water at 59 degrees Fahrenheit which allows the use of 

1.99 lb s2 / ft4 for the density. 
 
Note 3:  It is assumed that the waterplane area doesn’t change much in one inch so that the 

volume required for one inch of submergence can be approximated by the product of the 
waterplane area and 1 inch of thickness.  This is the same as assuming the volume is a 
right prism with the waterplane as the cross section and a height of one inch. 

 
To calculate the change in draft due to parallel sinkage the following equation is used: 
 

TPI
wTPS =δ  

 
  where: δTPS   change in draft due to parallel sinkage [inches] 

w   amount of weight added or removed from the ship [LT] 
TPI [LT/in]  from curves of form 

 
2.10.1.5 WPA or Awp 
 
WPA  or Awp stands for the waterplane area. The units of WPA are ft2. This is the same 
waterplane area that was calculated with Simpson’s rule in Section 2.9.1. 
 
2.10.1.6 LCF 
 
LCF is the longitudinal center of flotation. It is the distance in feet from the longitudinal 
reference to the center of flotation. The reference position could be the FP or midships. If it is 
midships remember that distances aft of midships are negative.  You were shown how to 
calculate the LCF using a table of offsets and Simpson’s rule in Section 2.9.4 . 
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2.10.1.7 Moment/ Trim 1" or MT1" 
 
This stands for the moment to change trim one inch. The units are LT-ft per inch. The ship will 
rotate about the center of flotation when a moment is applied to it. The moment can be produced 
by adding, removing, or shifting a weight some distance from the center of flotation. There are 
an infinite number of possible combinations of weights and distances to achieve the moment. 
You will use this concept when doing changes in trim problems in chapter 3. 
 
 Trim is defined as the draft aft minus the draft forward. ! By convention when a ship is down by the bow it is assigned a negative trim. 
 
To compute the change in trim due to a weight shift or addition the following equation is used: 

 

"1MT
wlTrim =δ    

 where: 
δTrim  total change in trim [inches] 

  w amount of weight added, removed, or shifted [LT] 
             l   distance the weight was moved; or if weight was added or               

removed, the distance of the weight from F 
             MT1"  Moment to Change Trim 1 inch (from curves of form) [LT ft/in] 
 
2.10.1.8 KML  
 
This stands for the distance in feet from the keel to the longitudinal metacenter.  For now just 
assume the metacenter is a convenient reference point vertically above the keel of the ship for 
Naval Architecture calculations.  This distance is on the order of one hundred to one thousand 
feet whereas the distance from the keel to the transverse metacenter is only on the order of ten to 
thirty feet.    
 
2.10.1.9 KMT 
 
This stands for the distance in feet from the keel to the transverse metacenter. Typically, Naval 
Architects do not bother putting the subscript “T” for any property in the transverse direction 
because it is assumed that when no subscript is present the transverse direction is implied.   
 
 
 You have done the calculations for at least two of the properties listed in the curves of 

form. This should have given you an appreciation for how the curves of form are 
constructed. Given more time and a little more instruction you could use a table of offsets 
and numerical integration to obtain the rest of the properties. Be grateful that all these 
calculations have been done already so that all you have to do is look up these values.   

! 

 
Be sure that, given a ship’s curves of form and a mean draft, you can find any of the properties 
listed above. You will need this skill to obtain the values for calculations that will follow in 
subsequent chapters. 
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HOMEWORK CHAPTER 2 
 
Section 2.2  
 
Ship Categories  
 
1. A small boat weighing 40 LT has a submerged volume of 875 ft3 when traveling at 20 

 seawater. (ρ = 1.99 lb-s2/ft4 ; 1 LT = 2240 lb) knots in  
 a. Calculate the magnitude of the hydrostatic support being experienced by boat. 
 b. What other type of support is the boat experiencing? 
 c. Calculate the magnitude of this other type of support. 
 d. What will happen to the submerged volume of the boat if it slows to 5 knots? 

Explain your answer. 
 
 
2. How are Hovercraft and Surface Effect Ships supported when moving across water. 

Briefly describe the advantages and disadvantages of each. 
 
 
3. a. What does the acronym SWATH stand for? 
 b. What kind of support does the SWATH have while in operation? 
 c. What are the advantages associated with a SWATH design? 
 
 
SECTION 2.3-2.5 
 
Body Plan  
 
4.   Sketch a profile of a ship and show the following: 
 a.  Forward Perpendicular 
 b.  After Perpendicular 
 c.  Sections, assuming the ship has stations numbered 0 through 10. 
 d.  Length Between Perpendiculars 
 e.  Length Overall 
 f.  Design Waterline 
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Hull Form Characteristics  
 
5.   Sketch a section of a ship and show the following: 
a.   Keel 
 b.  Depth 
 c.  Draft 
 d.  Beam 
 e.  Freeboard 
 
Lines Plan 
 
6.   For this question, use a full sheet of graph paper for each drawing. Choose a scale that 

gives the best representation of the ship’s lines. Use the FFG-7 Table of Offsets given on 
the following page for your drawings. 

 
a.  For stations 0-10 draw a Body Plan for the ship up to the main deck. Omit stations 

2.5 and 7.5. 
 

b.  Draw a half-breadth plan showing the 4 ft, 8 ft, 12 ft, 16 ft, 24 ft waterlines, and 
the deck edge. 

 
 c.  Draw the shear profile of the ship. 
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FFG-7 TABLE of OFFSETS 
 

Half-breadths given in feet from centerline                     Lpp = 408 ft                    DWL = 16 ft 
 

Station Numbers 
Waterline 
(ft) above 
baseline 

-0.5 0 
(FP) 

0.5 1 2 2.5 3 4 5 6 7 7.5 8 9 10 
(AP) 

Waterplane 
Area (ft2) 

24 0.0 2.08 6.16 9.93 16.08 18.43 20.23 22.38 23.19 23.33 22.93 22.57 22.01 19.87 16.06 15513.2 
16 (DWL)  0.33 3.68 6.93 12.93 15.52 17.75 21.00 22.61 22.74 21.74 20.82 19.59 16.72 12.46 13826.0 

12      5.78 11.60 14.07 16.31 19.92 21.89 21.79 20.24 19.07 17.54 13.16 12273.2 
8       4.82 10.18 12.39 14.43 18.02 19.93 19.21 16.24 14.1 11.12 9213.7 
4         3.62 7.63 9.24 10.77 13.36 14.48 12.86 8.71 5930.1 

0 (Keel)          0.68 0.68 0.68 0.68 0.68 0.68 0.68 314.4 
 

Sectional Area 

to DWL (ft2) 
 0.88             357.9 556.3 334.1 33.22 

 

Half-Breadth 

at Deck Edge 

(ft) 

0.00 9.66      16.0 20.91 22.74 23.29 23.51 23.5 23.4 23.1 21.2 17.5 

 

Height of Deck 

above Baseline 

(ft) 

41.0 39.58 38.18 36.77 34.59 33.61 32.62 31.3 30.25 29.41 29.07 29.15 29.23 29.88 30.84 

 

Height of Keel 

above Baseline 

(ft) 

41.0 14.35 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.93 2.85 4.77 9.29 13.62 

 



 

Section 2.7 
 
Center of Flotation & Center of Buoyancy  
 
7.   A box-shaped barge has the following dimensions: Length = 100 feet, Beam = 40 

feet, Depth = 25 feet. The barge is floating at a draft of 10 feet. 
 

a.  Draw a waterplane, profile, and end view of the barge. On each view 
indicate the following: centerline, waterline, midships, center of buoyancy 
(B), and center of  flotation (F).  

  
 b.  On your drawing show the following distances: KB, LCF referenced from 

the forward perpendicular, and LCB referenced from amidships. 
 
 c. Based on the given dimensions of the barge, determine the following 
dimensions: 
 
  i.   KB 
  ii.  LCF referenced to amidships 
  iii. LCB referenced to the forward perpendicular 
  iv. Height of F above the keel 
 
Section 2.8 
 
For each Simpson’s Rule problem, show all solution steps in your work (i.e. diagram, 
differential element and its dimensions, labels, general calculus equation, general 
Simpson equation, numeric substitution, and final answer. 
  
8.   Using Simpson’s Rule calculate the areas of the following objects: 
 
 a.  Right triangle with base length of “a” and a height of length “b”. 
 
 b.  Semi-circle of radius “r”. 
 
 c.  Equilateral triangle with each side having length “a”. 
 
Section 2.9  
 
Waterplane Area  
 
9.  The FFG-7 table of offsets gives waterplane areas calculated using all stations. 

Using data for stations 0, 2.5, 5, 7.5, and 10, calculate the waterplane area at the 
DWL and compare your result with the given waterplane area.  
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Sectional Areas  
 
10.   Using the FFG-7 table of offsets, calculate the sectional area of station 3 up to the 

DWL. 
 
11.   Using the FFG-7 table of offsets, calculate the area of station 6 up to the 24 foot 

waterline. 
 
Submerged Volume  
 
12.   Using the sectional areas for stations 0, 2.5, 5, 7.5, and 10 calculate the following: 
 
 a.  Submerged volume of the FFG-7 up to the design waterline. 
 
 b.  Displacement in salt water. 
 
 c.  Displacement in fresh water. 
 
 
Longitudinal Center of Floatation  
 
13.   Using the FFG-7 table of offsets, and stations 0, 2.5, 5, 7.5, and 10, calculate the 

location of the longitudinal center of flotation (LCF) of the DWL referenced to 
amidships. 

 
Section 2.10  
 
Curves of Form 
 
14.  The Curves of Form for a ship are a graphical representation of its hydrostatic 

properties. When computing a ship’s hydrostatic properties and creating the 
Curves of Form, what 2 assumptions are made? 

 
15.  An FFG-7 is floating on an even keel at a draft of 14 feet. Using its Curves of 

Form, find the following parameters: 
 
 a.   Displacement (D) 
 b.   Longitudinal center of flotation (LCF) 
 c.   Vertical center of buoyancy (KB) 
 d.   Tons per inch immersion (TPI)  
 e.   Moment to trim 1 inch (MT1") 
 f.   Submerged volume  
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16.   An FFG-7 is floating with a forward draft of 14.9 feet and an aft draft of 15.5 feet. 
Determine the following: 

 
 a.   Displacement (D) 
 b.   Longitudinal center of flotation (LCF) 
 c.   Moment to trim 1 inch (MT1") 
 
 
17.   The FFG in problem 15 changes its draft from 14 feet to 15.5 feet. What is the 

new value of TPI? Why does this value of TPI change? 
 
18.   A DDG-51 is floating on an even keel at a draft of 21.5 feet. A piece of 

machinery weighing 150 LT is added to the ship.  
 
 a.  At which position on the ship must the weight be added so that trim does 

not change? 
 
 b.  What is the change in ship’s draft, in feet, due to the weight addition? 
 
 c.  Compute the final draft after the weight addition. 
 
19.   A DDG-51 is floating on an even keel at a draft of 21.5 feet. A piece of 

machinery weighing 50 LT is moved from the center of flotation to a point 150 
feet forward of F. What is the change in ship’s trim due to this weight shift. 

 
The following problems cover OPTIONAL material from the text but may be useful 
in demonstrating principles. For each question use only stations 0, 2.5, 5, 7.5, and 
10. 
 
A.  Find the longitudinal center of buoyancy for the ship at a draft of 16 feet. 
 
B.  Calculate the Transverse Second Moment of Area of the Design Waterline. 
 
C.  Calculate the Longitudinal Second Moment of Area of the DWL about the center 

of flotation. 
 
D.  Calculate the Vertical Center of Buoyancy (KB) of the ship when floating at its 
design draft. 


